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Successive deceleration in Boltzmann-like traffic equations

C. Wagner
Siemens AG, Corporate Research and Development, Otto-Hahn-Ring 6, 81730 Munich, Germany

~Received 13 November 1996!

When modeling the slowing-down process in kinetic traffic flow equations the assumption of an instanta-
neous deceleration is usually made. In this paper we consider a successive slowing-down process, where
drivers react on traffic conditions ahead of them in a more moderate manner. From this modified interaction we
derive macroscopic traffic equations. Although the present model equations seem to be rather similar to a
traffic model presented recently@C. Wagneret al., Phys. Rev. E54, 5073 ~1996!#, the changes result in
qualitatively different behavior of the velocity variance when a traffic cluster builds up, i.e., the velocity
variance decreases, whereas it increases in the preceding ‘‘free driving region.’’ This dynamical behavior is
supported by empirical data and is complementary to the behavior found in former macroscopic models.
@S1063-651X~97!04406-1#

PACS number~s!: 51.10.1y, 89.40.1k, 47.90.1a, 34.90.1q
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I. INTRODUCTION

In recent years the theory of vehicular traffic has gain
increasing attention@1–10#. One interesting aspect is the lin
between microscopic and macroscopic descriptions. For
croscopic simulations cellular automata are widely used,
already Prigogine and Herman and others@11–14,10# have
introduced an approach using Boltzmann-like equations
describe traffic flow. On the macroscopic side several mod
have been proposed@15,9,3#, mainly based on analogies t
hydrodynamic equations. In a series of papers Helbing@2#
investigated the theoretical foundations of macroscopic t
fic equations and derived Euler-like and Navier-Stokes-l
models from a reduced version of Paveri-Fontana’s equa
@12#. In a recent paper@1#, we derived Euler-like traffic equa
tions from the full version of Paveri-Fontana’s equation, th
showing that a spatial variation in the variance of the des
speed can cause the onset of a traffic jam. Furthermore
have extended Paveri-Fontana’s equation to high densitie
taking the finite car length into account similarly to Enskog
theory@16–18# for dense gases, eventually leading to diffe
ent gradient terms in the macroscopic equations.

We now resume this work and generalize another assu
tion made when writing down Paveri-Fontana’s equation,
assumption of an instantaneous slowing-down process.
relax this assumption towards a successive deceleratio
introducing a modified version of the interaction term.
Sec. II we briefly summarize Paveri-Fontana’s traffic eq
tion and then introduce our modified interaction term
extended vehicles with successive deceleration. The ma
scopic equations are derived in Sec. III and are related to
former model. We find that, besides some marginal chan
the most important different feature is the appearance
highly nonlinear term in the variance equation of the act
velocity that has an impeding effect. Indeed, the numer
simulations discussed in Sec. IV show that this term yield
qualitatively different behavior of the variance of the actu
velocity when compared to former models. In the conges
region the variance now decreases, whereas it increas
the preceding ‘‘free driving region.’’ This dynamical beha
ior is a direct consequence of the different interaction te
and is supported by empirical data.
551063-651X/97/55~6!/6969~10!/$10.00
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II. THE MODIFIED BOLTZMANN-LIKE EQUATION

In a recent paper@1#, we started from a Boltzmann-like
traffic equation proposed by Paveri-Fontana@12#. In the
original work by Paveri-Fontana some assumptions w
made when modeling the deceleration process as a colli
integral. For example, the vehicles are assumed to be po
like particles and the slowing-down process is instantaneo
The former assumption has already been generalized in@1#
by taking into account the finite car length and a veloci
dependent safety distance analogous to the classical
proach for dense gases due to Enskog@16–18#. Now we
want to relax the assumption of an instantaneous slow
down process towards a successive deceleration. For thi
us briefly recapitulate Paveri-Fontana’s Boltzmann-li
equation~for a detailed discussion see@12,1#! and then intro-
duce the modified interaction term.

Let g(x,v,w,t) denote the one-vehicle distribution func
tion for vehicles with desired speedw in the phase space
spanned byx,v,w,t, where g(x,v,w,t)dx dv dw denotes
the number of vehicles at timet, in positiondx aroundx,
and actual speeddv aroundv with desired speeddw around
w. The road is assumed to be a one-dimensional, unidi
tional lane, but passing is allowed. This can be conceived
a coarse-grained multilane road where an average over
different lanes has been taken.

The one-vehicle speed distribution function f(x,v,t) and
the one-vehicle desired speed distribution functi
f 0(x,w,t) are given by

f ~x,v,t !5E
0

1`

dw g~x,v,w,t !, ~2.1!

f 0~x,w,t !5E
0

1`

dv g~x,v,w,t !. ~2.2!

The vehicular concentrationc(x,t), the average velocity
v̄(x,t), the average desired velocityw̄(x,t), and the flow
q(x,t) are then defined as

c~x,t !5E
0

1`

dwE
0

1`

dv g~x,v,w,t !, ~2.3!
6969 © 1997 The American Physical Society
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v̄~x,t !5
*0

1`dw*0
1`dv vg~x,v,w,t !

c~x,t !
, ~2.4!

w̄~x,t !5
*0

1`dw*0
1`dv wg~x,v,w,t !

c~x,t !
, ~2.5!

q~x,t !5c~x,t !v̄~x,t !. ~2.6!

Paveri-Fontana’s Boltzmann-like traffic equation reads

S ]

]t
1v

]

]xDg1
]

]v Sw2v
T

gD
5 f ~x,v,t !E

0

1`

dv8~12P!~v82v !g~x,v8,w,t !

2g~x,v,w,t !E
0

v
dv8~12P!~v2v8! f ~x,v8,t !,

~2.7!

where the following assumptions have been made.
~i! The slowing-down process has a probability (12P),

whereP denotes the probability of passing, 0<P<1. If the
fast car passes the slow one, its velocity is not affected.

~ii ! The velocity of the slow car is unaffected by the i
teraction or by the fact of being passed.

~iii ! Cars are regarded as pointlike objects, so the veh
length can be neglected.

~iv! The slowing-down process is instantaneous, i
there is no braking time.

~v! Only two-vehicle interactions are considered; mu
vehicle interactions are excluded.

~vi! One assumes ‘‘vehicular chaos’’, i.e., vehicles a
not correlated,

g2~x,v,w,x8,v8,w8,t !.g~x,v,w,t !g~x8,v8,w8,t !,
~2.8!

whereg2 denotes the two-vehicle distribution function.
The first part of the collision integral of Eq.~2.7! de-

scribes the gain of the phase-space element, i.e., veh
with velocity v8>v collide with vehicles with velocityv,
while the second term describes the loss of the phase s
element, i.e., vehicles with velocityv collide with vehicles
with even slower velocityv8. Furthermore, it is assumed th
no driver changes his desired speed, i.e.,

dw

dt
50, ~2.9!

and that the acceleration of each car is modeled by

dv
dt

5
w2v
T

, ~2.10!

i.e., the drivers approach their desired speed exponential
time, with time constantT. ~T might be a function ofc,v̄,
see, for example,@13#.!

The probability of passing is usually chosen to be den
dependent, for example,P(c)512c/ ĉ ~ĉ denotes the maxi-
mal density@11#!, but additional velocity and variance de
le

.,

les

ce

in

y

pendences have been proposed in@13#. The assumption of an
instantaneous interaction is approximately valid for p
cesses where the slowing-down timeDt and the length
vDt are short compared to the characteristic time and len
scales involved. Having made the assumption of vehicu
chaos, the microscopic equation is valid only for dilute tra
fic.

In @1# we have already extended assumption~iii ! to ve-
hicles with finite length including a velocity-depende
safety distance. Hence we have introduced the required
lengthd(v)5 l1tv, wherel is the average car length,v is
the velocity of the car, andt is a reaction time. Now we wan
to relax assumption~iv!, i.e., the assumption that th
slowing-down process is instantaneous. For this, we desc
the interaction process as follows@note that we take into
account the required car lengthd(v) from the very begin-
ning#. Let v, andv. denote the actual speed of the slow c
and the fast car, respectively. When the fast car reaches
slow car from behind the slow car is a distanced(v.) ahead.
The two vehicles interact with a probability 12P @assump-
tion ~i!#. When an interaction takes place the slow car
mains unaffected, i.e., it retains its velocityv, @assumption
~ii !#, whereas the fast car changes its velocity
F(v, ,v.), with 0<F,v. . In the original version of the
collision term the fast vehicle adopts the velocity of the p
ceeding slow vehicle, i.e.,F(v, ,v.)5v, . In order to in-
vestigate the effect of a more moderate deceleration we
choose belowF(v, ,v.)5

1
2(v,1v.). For other possible

functionsF the calculations can be done analogously. F
example, a functionF8 with F8(v, ,v.)<v, would de-
scribe an ‘‘overbraking’’ of the fast vehicle. The remainin
assumptions~v! and ~vi! are still assumed to be valid.

The modified collision integral on the right-hand sid
~RHS! of Eq. ~2.7! is then given by

S ]g

]t D
coll

5E E
0<v1<v3

dv1dv3s„x1d~v3!…~v32v1!

3 f „x1d~v3!,v1 ,t…g~x,v3,w,t !d„v2F~v1 ,v3!…

2g~x,v,w,t !E E
0<v1<v

dv1dv2s„x1d~v !…

3~v2v1! f „x1d~v !,v1 ,t…d„v22F~v1 ,v !….

~2.11!

The first part describes the gain of the phase-space elem
aroundv,w, i.e., vehicles with velocityv3 collide with ve-
hicles with velocity v1<v3 such that the velocity of the
faster vehicle after the collision isv5F(v1 ,v3). The second
term describes the loss of the phase-space element ar
v,w, i.e., vehicles with velocityv collide with vehicles with
slower velocity v1<v and are scattered to velocitiesv2
5F(v1 ,v).

When taking into account the finite car length, the effe
tive volume is reduced and thus the collision frequency
increased. As in@1#, we incorporate this by changing th
cross section in Eq.~2.7! from 12P to the modified cross
sections5x(c,v̄)@12P(c)# in Eq. ~2.11!, with
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x~c,v̄ !5
1

12cd~ v̄ !
5

1

12c~ l1t v̄ !
. ~2.12!

Since the hindrance is now a distanced(v) ahead of the fas
car the cross section depends on the macroscopic quan
at this point. This is implied by the notations„x1d(v)….
Later on we will Taylor expands around the positionx and
use

]xs5~12P!x2@d~ v̄ !]xc1ct]x v̄ #2xP8]xc

5h]xc1z]xv̄, ~2.13!

with h5@sd( v̄)2P8#x, z5sxct, andP8 denotes the de
rivative of P with respect to its argunent. Note thath,z>0.

Notice also that the interaction is still instantaneous,
the slowing-down process is now stepwise. When a fast
interacts with a slow car its speed is reduced tov
5F(v, ,v.). After the interaction the fast car is still behin
the slow car, but has now the required lengthd(v)
<d(v.). The fast car moves on before another collision c
take place.

III. MACROSCOPIC EQUATIONS

As in @1#, we find a hierachy of moment equations b
taking the moments of Eq.~2.7!, but we now have to be mor
ies

t
ar

n

careful when considering the moments of the collision in
gral. In order to evaluate the integrals we again neglect th
and higher-order terms in the cumulant expansion of the
tribution function. This amounts to an approximation of t
local equilibrium function by a normal distribution, i.e., w
assume that the vehicles with desired velocityw are nor-
mally distributed and that the local equilibrium distributio
in the actual velocity is given by a Gaussian~the latter is
supported by experimental data@13,19–23#!. One first de-
fines

dv:5v2 v̄, dw:5w2w̄ ~3.1!

and

Uvv :5~dv !2, Uww :5~dw!2, Uvw :5dvdw,
~3.2!

where the overbar denotes the normalized average with
spect to the distribution functiong(v,w).

A. The continuity equation

Integration of the collision integral~2.11! overdv gives
E
0

`

dvE E
0<v1<v3

dv1dv3s~v32v1! f „x1d~v3!,v1 ,t…g~x,v3 ,w,t !d„v2F~v1 ,v3!…

2E
0

`

dvE E
0<v1<v

dv1dv2s~v2v1! f „x1d~v !,v1 ,t…g~x,v,w,t !d„v22F~v1 ,v !…

5E
0

`

dv2E E
0<v1<v3

dv1dv3s~v32v1! f „x1d~v3!,v1 ,t…g~x,v3 ,w,t !d„v22F~v1 ,v3!…

2E
0

`

dv3E E
0<v1<v3

dv1dv2s~v32v1! f „x1d~v !,v1 ,t…g~x,v,w,t !d„v22F~v1 ,v3!…

5E E E
0<v1<v2<v3

dv1dv2dv3s~v32v1! f „x1d~v3!,v1 ,t…g~x,v3 ,w,t !d„v22F~v1 ,v3!…

2E E E
0<v1<v2<v3

dv1dv2dv3s~v32v1! f „x1d~v3!,v1 ,t…g~x,v3 ,w,t !d„v22F~v1 ,v3!…50. ~3.3!
d
the
The contribution of the relaxation term in Eq.~2.7! disap-
pears due to vanishing surface terms. Thus we find

]

]t
f 0~x,w,t !1

]

]x
@ v̄~x,w,t ! f 0~x,w,t !#50, ~3.4!

wherev̄(x,w,t) is defined as

v̄~x,w,t !5
*0

1`dv vg~x,v,w,t !

f 0~x,w,t !
. ~3.5!
Equation ~2.11! is a continuity equation for each desire
speedw separately and has certainly also been found for
original equation~2.7!; see@12,1#. A further integration over
dw leads again to the continuity equation

]

]t
c1

]

]x
~cv̄ !50. ~3.6!

B. The mean desired velocity equation

As in @12,1#, integrating@LHS of Eq. ~2.7!#5@Eq. ~2.11!#
overdv dw w leads to
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]

]t
~cw̄!1

]

]x
~cvw!50 ~3.7!

and finally to

] tw̄1 v̄]xw̄52
Uvw

c
]xc2]xUvw . ~3.8!

C. The mean actual velocity

We now takeF(v, ,v.)5
1
2(v,1v.!. For the LHS of

Eq. ~2.7!, we again find after an integration overdv dw v,

]

]t
~cv̄ !1

]

]x
~cv2!1

c

T
~ v̄2w̄!, ~3.9!

whereas for the interaction term Eq.~2.11! one gets

E
0

`

dvE E
0<v1<v3

dv1dv3s„x1d~v3!…v~v32v1!

3 f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v2
v11v3
2 D

2E
0

`

dvE E
0<v1<v

dv1dv2s„x1d~v !…v~v2v1!

3 f „x1d~v !,v1 ,t…f ~x,v,t !dS v22 v11v
2 D

'2 1
2sc2Uvv1

1
2c~a1]xc1a2]xv̄1a3]xUvv!

1 1
2a4]xs. ~3.10!

In Appendix A we show the main steps of the calculatio
We just remark that we have Taylor expanded the distri
tion function aroundx, keeping only the linear terms, an
that we have approximated the local equilibrium solution
a normal distribution. The coefficientsa1 ,a2 ,a3 ,a4 are
given below.

Equation~3.10!, together with Eqs.~2.13! and~3.9!, leads
eventually to

] tv̄1 v̄]xv̄5S 12 a11
1

2
ha42

Uvv

c D ]xc1
1

2
~a21za4!]xv̄

1S 12 a321D ]xUvv1
w̄2 v̄
T

2
1

2
sUvv ,

~3.11!

with

a152sXl1tS 2

Ap
AUvv1 v̄ D CUvv . ~3.12!

a25sS 2

Ap
AUvv~ l1t v̄ !1tUvvD c, ~3.13!

a352s
1

2
Xl1tS 1

Ap
AUvv1 v̄ D Cc, ~3.14!
.
-

y

a452cUvv~ l1t v̄ !2t
2

Ap
cUvvAUvv. ~3.15!

Comparing these equations with the respective mean velo
equation previously derived@1#, we immediately notice tha
the coefficientsa i are identical, the only difference being th
factor 1

2 in front of thea i ’s and in front of the interaction
term on the far-right-hand side of Eq.~3.11!.

D. The variance of the actual velocity

Integration of the LHS of Eq.~2.7! overdv dw v2 yields,
after using Eqs.~3.8! and ~3.11!,

] t~cUvv!1 v̄]x~cUvv!13cUvv]xv̄1]x@c~]v !3#

1
2c

T
~Uvv2Uvw!2sc2v̄Uvv1cv̄@~a11ha4!]xc

1~a21za4!]xv̄1a3]xUvv#, ~3.16!

whereas for the interaction term~2.11! one gets

E
0

`

dvE E
0<v1<v3

dv1dv3s„x1d~v3!…v
2~v32v1!

3 f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v2
v11v3
2 D

2E
0

`

dvE E
0<v1<v

dv1dv2s„x1d~v !…v2~v2v1!

3 f „x1d~v !,v1 ,t) f (x,v,t…dS v22 v11v
2 D

'2sS c2v̄Uvv1
1

Ap
c2UvvAUvvD

1j1]xc1j2]xv̄1j3]xUvv1j4]xs, ~3.17!

wherej1 ,j2 ,j3j4 have a similar structure to thea,’s. The
main steps of the calculation are given in Appendix B.
find the coefficientsj i we have again used a cumulant e
pansion and have discarded third- and higher-order ter
Together with Eq.~3.16! ~discarding the third-order cumu
lant! we get

] tUvv1 v̄]xUvv5
2

T
~Uvw2Uvv!2

1

Ap
scUvvAUvv

1~ b̃11hb̃4!]xc1~ b̃21zb̃422Uvv!]xv̄

1b̃3]xUvv , ~3.18!

with

b̃152sS 1

Ap
UvvAUvv~ l1t v̄ !1

5

4
Uvv

2 t D , ~3.19!

b̃25sS 14 Uvv~ l1t v̄ !1
3

2Ap
UvvAUvvt D c, ~3.20!
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b̃35sS 1

4Ap
AUvv~ l1t v̄ !2

1

8
Uvvt D c, ~3.21!

b̃452cUvvS 1

Ap
AUvv~ l1t v̄ !1

5

4
Uvvt D . ~3.22!

Now the coefficientsb̃ i have slightly changed in compariso
to the coefficientsb i derived in @1#. More important is the
appearance of the second highly nonlinear term on the R
of Eq. ~3.18!. The negative sign of this term yields an im
peding effect on the dynamical behavior of the varian
similar to the last term of the covariance equation~3.27! ~see
below!.

E. The variance of the desired velocity

As in @12,1#, an integration of@LHS of Eq. ~2.7!#5@Eq.
~2.11!# overdv dw w2 leads to
-

S

,

] t~cUww!1 v̄]x~cUww!12cUvw]xw̄1cUww]xv̄

1]x@c~dw!2dv#50 ~3.23!

and after discarding third-order cumulant to

] tUww1 v̄]xUww12Uvw]xw̄50. ~3.24!

F. The covariance equation

For the LHS of Eq.~2.7!, we again find after an integra
tion overdv dw vw and using Eqs.~3.8! and ~3.11!

] t~cUvw!1 v̄]x~cUvw!12cUvw]xv̄1cUvv]xw̄

1]x~c~dv !2dw!2
1

2
sc2w̄Uvv1

c

T
~Uvw2Uww!

1
1

2
cw̄ @~a11ha4!]xc1~a21za4!]xv̄1a3]xUvv#.

~3.25!

For the interaction term~2.11! one gets
E
0

`

du wE
0

`

dvE E
0<v1<v3

dv1dv3s„x1d~v3!…v~v32v1! f „x1d~v3!,v1 ,t…g~x,v3 ,w,t !dS v2
v11v3
2 D

2E
0

`

dw wE
0

`

dvE E
0<v1<v

dv1dv2s„x1d~v !…v~v2v1! f „x1d~v !,v1 ,t…g~x,v,w,t !dS v22 v11v
2 D

'
1

2 E
0

`

dw wE
0

`

dv3E
0

v3
dv1„s1d~v3!]xs…~v12v3!~v32v1!@ f ~x,v1 ,t !1d~v3!]xf ~x,v1 ,t !#g~x,v3 ,w,t !

'
1

2
sS c2w̄Uvv1

2

Ap
c2UvwAUvvD 1

1

2
~q1]xc1q2]xv̄1q3]xUvv1q4]xs!, ~3.26!
e

whereq1 ,q2 ,q3 ,q4 , have a similar structure to thea’s.
Together with Eq.~3.25! ~discarding the third-order cumu
lant! we get

] tUvw1 v̄]xUvw5
1

2
~g11hg4!]xc

1S 12 g21
1

2
zg42UvwD ]xv̄2Uvv]xw̄

1
1

2
g3]xUvv1

1

T
~Uww2Uvw!

2
1

2
s

2

Ap
cUvwAUvv, ~3.27!

with
g152sS 2

Ap
UvwAUvv~ l1t v̄ !1tUvwUvvD ,

~3.28!

g25sS ~ l1t v̄ !Uvw1t
3

Ap
UvwAUvvD c, ~3.29!

g352sS 1

2Ap

Uvw

AUvv

~ l1t v̄ !1
1

2
tUvwD c,

~3.30!

g452
2

Ap
cUvwAUvv~ l1t v̄ !22tcUvvUvw .

Comparing Eq.~3.27! with the former version in@1#, we find
that again the coefficientsg i are identical and that just th
factor 1

2 has emerged in front of theg’s and the far-right-
hand term of Eq.~3.27!.
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FIG. 1. Time evolution of the traffic flow starting from a homogeneous state with a small perturbation of the desired velocity v
using Eqs.~3.6!, ~3.8!, ~3.11!, ~3.18!, ~3.24!, and~3.27!: ~a! densityr, ~b! mean velocityv̄, and~c! mean desired velocityw̄.
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G. The homogeneous solution

The homogeneous solution for the system of partial d
ferential equations~3.6!, ~3.8!, ~3.11!, ~3.18!, ~3.24!, and
~3.27! is found to be

w̄2 v̄5
T

2
scUvv , ~3.31!

Uvw5UvvS 11
T

2

s

Ap
cAUvvD , ~3.32!

Uww5UvwS 11Ts
1

Ap
cAUvvD . ~3.33!

Thus, given certain values forc, v, and Uvv , the mean
desired velocityw̄, the varianceUww , and the covariance
Uvw are determined.

Let us now summarize the comparison. The continu
equation~3.6!, the equation for the mean desired veloc
~3.8!, and the equation for the variance of the desired vel
ity ~3.24! remain unchanged. In the mean velocity equat
~3.11! and the covariance equation~3.27! we find a factor
1
2 for the term originating from the collision integral. In Eq
~3.18! for the variance of the actual velocity the coefficien
-

y

-
n

b̃ i have changed, but the more important feature is the t
2(1/Ap)scUvvAUvv, which has no corresponding part i
the original model~see@1#!. The homogeneous solution ha
also changed. In Eq.~3.31! the factor12 appears on the RHS
andUvw andUvv are no longer equal@Eq. ~3.32!# as in the
original model. Finally, in the relation betweenUww and
Uvw a factor 2 is missing in front of the scattering probab
ity s. The numerical simulations below show that the
changes and especially the different nonlinear term resu
qualitatively different behavior of the variance of the actu
velocity.

IV. NUMERICAL SIMULATIONS

In Figs. 1 and 2 we present numerical simulations of E
~3.6!, ~3.8!, ~3.11!, ~3.18!, ~3.24! and~3.27! obtained by step-
wise integration. Periodic boundary conditions are assum
andT5300, t50.5 s, andl55 m. As the homogeneous so
lution we choose v526 m/s, c50.8ĉ( v̂), and Uvv
510.8 m2/s2. Equations ~3.31!–~3.33! then yield w̄
534m/s, Uww596.0 m2/s2, andUvw525.6 m2/s2. At time
t50 and positionx55 km we have added a small Gaussia
shaped perturbation to the otherwise constant desired ve
ity varianceUww .

First, we observe that similar to our former model@1#, a
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FIG. 2. Time evolution of the variancesUvv , Uww and of the covarianceUvw : ~a! variance(dv)2, ~b! variance(dw)2, and ~c!
covariancedvdw.
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traffic cluster is built, i.e., we find a region of lower densi
followed by a region of higher density. But now the increa
of the density@Fig. 1~a!# and the decrease of the mean v
locity @Fig. 1~b!# are much more moderate, as we exp
from the modified collision integral. The other dynamic
quantities@Figs. 1~c!, and 2~a!–2c# behave in a similar mod
erate way. The striking different feature is now the decre
of the velocity variance in the jam region@Fig. 2~a!#, in con-
trast to the increasing behavior of the velocity variance in
former model. This is in agreement with empirical data
vestigated by Helbing@2#. He finds that, although there is
small peak in the velocity variance at the onset of a tra
jam due to larger fluctuations, the velocity variance d
creases in the high-density jam region. In the former mo
we assumed a sharp change in the velocity when a fas
reaches a slow car. Now vehicles reaching the rear end o
high-density region adapt their velocity successively to
lower mean velocity, thus the velocity variance is lowere
In Fig. 3 we have plotted the rescaled densityc, the rescaled
mean velocityv̄, and the rescaled velocity varianceUvv at
time t5200 s~periodic boundary conditions!. In Fig. 2~c! we
observe that the covariance is lower in the jam region,
more drivers drive with a lower velocity than their desir
velocity, while the covariance is higher in the preceding lo
density region, meaning that it is now easier to reach on
e
-
t
l

e

e
-

c
-
el
ar
he
e
.

.,

-
’s

desired velocity. In order to interpret the dynamical behav
of the mean desired velocity and the desired velocity va
ance we show these rescaled quantities together with the
caled density at timet5200 in Fig. 4. A high desired veloc
ity variance represents a mixing of desired veloc
‘‘classes,’’ while a low desired velocity variance means th
only drivers with similar desired velocities are present.
the rear end of the density cluster we find a higher me
desired velocity and a lower desired velocity variance, i
more drivers with a high desired velocity reach the rear e
per time unit than drivers with a low desired velocity. At th
front end of the jam we observe a low mean desired velo
and a high variance. At this point the cars reach the f
driving region, i.e., we find all kinds of driver characters, b
the more timid drivers stay behind. The more aggress
drivers accumulate again at the front end of the low-den
region. To summarize the simulation results, we observe
the overall behavior of the dynamical quantities is similar
the former model, except that the velocity variance sho
now a more realistic behavior.

V. CONCLUSION

In order to model a more realistic slowing-down proce
we have presented a modified Boltzmann-like traffic eq
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tion. In contrast to Paveri-Fontana’s@12# original version,
the deceleration is now a successive process. We have
derived a macroscopic traffic model and have found that
most important different feature is a nonlinear term in t
velocity variance equation. Numerical simulations show t
again a traffic cluster is built, albeit the dynamical evoluti
is now more moderate. More striking is the dynamical b
havior of the velocity variance, which is now complementa
to our former model. Whereas in the former model the
locity variance possesses a sharp peak in the high-de
region, we now find a smaller velocity variance in the clu
ter. This behavior is qualitatively supported by empiric
traffic data@2# and can be explained by the interaction pr
cess since vehicles now adjust their velocity stepwise to
velocity of the leading vehicles. In order to obtain macr
scopic quantities from measurements one has to average
a certain time inteval. Instantaneous slowing down me
that the time of deceleration is small compared to the av
aging time. When fast vehicles reach slower vehicles t
have higher velocities before the slowing-down process
lower velocities after, i.e., the macroscopic velocity varian
is higher. But since drivers also react on traffic conditions

FIG. 3. Rescaled dynamical quatities att5200 s~note the peri-
odic boundary conditions!: densityc ~solid line!, mean velocityv̄
~dashed line!, and velocity varianceUvv ~dash-dotted line!.
en
e
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ity
-
l
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d
e
r

ahead, the slowing-down time can exceed the averag
time, i.e., the deceleration can no longer be regarded as b
instantaneous. The two models represent two extreme w
of modeling the slowing-down processes: One is rather s
den, whereas the other is highly ordered and moderate. U
now, we have not taken into account the case of panic b
ing, i.e., a fast vehicle finds a slower leading vehicle with
its safety distance, or the case of imperfect braking, i.e.,
hicles slow down to velocities slower than the velocity
their leading vehicle. The former has been worked out
Nelson@10# by generalizing the vehicular chaos assumptio
whereas the latter has been treated by Helbing@2#. Both
cases result in sudden velocity changes yielding a hig
variance and might therefore cancel to some extent the
fects of the successive slowing-down process discussed h
but the overall macroscopic behavior is apparently gover
by a more moderate velocity adjustment.
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FIG. 4. Rescaled dynamical quatities att5200 s~note the peri-
odic boundary conditions!: densityc ~solid line,! mean desired ve-
locity w̄ ~dashed line!, and desired velocity varianceUww ~dash-
dotted line!.
APPENDIX A: THE MEAN ACTUAL VELOCITY

Here we just sketch some of the steps to get from the first line of Eq.~3.10! to the second line:

E
0

`

dvE E
0<v1<v3

dv1dv3s„x1d~v3!…v~v32v1! f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v2
v11v3
2 D

2E
0

`

dvE E
0<v1<v

dv1dv2s„x1d~v !…v~v2v1! f „x1d~v !,v1 ,t…f ~x,v,t !dS v22 v11v
2 D

5E
0

`

dv2E E
0<v1<v2<v3

dv1dv3s„x1d~v3!…v2~v32v1! f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v22 v11v3
2 D

2E
0

`

dv2E E
0<v1<v2<v3

dv1dv3s„x1d~v3!…v3~v32v1! f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v22 v11v3
2 D
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' 1
2 E

0

`

dv3E
0

v3
dv1s„x1d~v3!…~v12v3!~v32v1!@ f ~x,v1 ,t !1d~v3!]xf ~x,v1 ,t !# f ~x,v3 ,t !

' 1
2sE

0

`

dv3E
0

`

dv1~v1v32v1
2! f ~x,v1 ,t ! f ~x,v3 ,t !2 1

2 ]xsE
0

`

dv3E
0

v3
dv1d~v3!~v32v1!

2f ~x,v1 ,t ! f ~x,v3 ,t !

1 1
2sE

0

`

dv3E
0

v3
dv1~2v1v32v1

22v3!d~v3! f ~x,v3,t !]xf ~x,v1 ,t !

'2 1
2sc2Uvv1

1
2c~a1]xc1a2]xv̄1a3]xUvv!1 1

2a4]xs. ~A1!

In going from the second to the third line we have Taylor expanded the distribution function aroundx and only kept the linear
terms. Between line 3 and line 4 we have Taylor expanded the cross sections. For the detailed calculations of the integrals
line 4 ~and similar integrals below!, we refer to@1#, where similar expressions have been evaluated for the original colli
integral. In order to derive these corrections we have approximated the local equilibrium solution by a normal distrib

APPENDIX B: THE VARIANCE OF THE ACTUAL VELOCITY

To get to the last line of Eq.~3.17! we make the following steps:

E
0

`

dvE E
0<v1<v3

dv1dv3s„x1d~v3!…v
2~v32v1! f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v2

v11v3
2 D

2E
0

`

dvE E
0<v1<v

dv1dv2s„x1d~v !…v2~v2v1! f „x1d~v !,v1 ,t) f ~x,v,t !dS v22 v11v
2 D

5E
0

`

dv2E E
0<v1<v2<v3

dv1dv3s„x1d~v3!…v2
2~v32v1! f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v22 v11v3

2 D
2E

0

`

dv2E E
0<v1<v2<v3

dv1dv3s„x1d~v3!…v3
2~v32v1! f „x1d~v3!,v1 ,t…f ~x,v3 ,t !dS v22 v11v3

2 D
' 1

4 E
0

`

dv3E
0

v3
dv1s„x1d~v3!…v1

2~v32v1!@ f ~x,v1 ,t !1d~v3!]xf ~x,v1 ,t !# f ~x,v3 ,t !

2 3
4 E

0

`

dv3E
0

v3
dv1s„x1d~v3!…v3

2~v32v1!@ f ~x,v1 ,t !1d~v3!]xf ~x,v1 ,t !# f ~x,v3 ,t !

1 1
2 E

0

`

dv3E
0

v3
dv1s„x1d~v3!…v1v3~v32v1!@ f ~x,v1 ,t !1d~v3!]xf ~x,v1 ,t !# f ~x,v3 ,t !

' 1
4 E

0

`

dv3E
0

`

dv1„s1d~v3!]xs…v1
2~v32v1! f ~x,v1 ,t ! f ~x,v3 ,t !

1 1
2 E

0

`

dv3E
0

v3
dv1„s1d~v3!]xs…~2v3

2v12v3v1
22v3

3! f ~x,v1 ,t ! f ~x,v3 ,t !

1E
0

`

dv3E
0

v3
dv1„s1d~v3!]xs…~2 1

4v3v1
21 5

4v3
2v12

1
4v1

32 3
4v3

3!d~v3! f ~x,v3 ,t !]xf ~x,v1 ,t !

'2sS c2v̄Uvv1
1

Ap
c2UvvAUvvD 1j1]xc1j2]xv̄1j3]xUvv1j4]xs. ~B1!
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