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Successive deceleration in Boltzmann-like traffic equations

C. Wagner
Siemens AG, Corporate Research and Development, Otto-Hahn-Ring 6, 81730 Munich, Germany
(Received 13 November 1996

When modeling the slowing-down process in kinetic traffic flow equations the assumption of an instanta-
neous deceleration is usually made. In this paper we consider a successive slowing-down process, where
drivers react on traffic conditions ahead of them in a more moderate manner. From this modified interaction we
derive macroscopic traffic equations. Although the present model equations seem to be rather similar to a
traffic model presented recentfC. Wagneret al, Phys. Rev. E54, 5073 (1996, the changes result in
qualitatively different behavior of the velocity variance when a traffic cluster builds up, i.e., the velocity
variance decreases, whereas it increases in the preceding “free driving region.” This dynamical behavior is
supported by empirical data and is complementary to the behavior found in former macroscopic models.
[S1063-651X97)04406-1

PACS numbds): 51.10+y, 89.40+k, 47.90+a, 34.90+q

I. INTRODUCTION Il. THE MODIFIED BOLTZMANN-LIKE EQUATION

. i . In a recent papefl], we started from a Boltzmann-like
In recent years the theory of vehicular traffic has ga'neqraﬁic equation proposed by Paveri-Fontafi2]. In the

increasing attentiofl-10]. One interesting aspect is the link g oinal work by Paveri-Fontana some assumptions were
between microscopic and macroscopic descriptions. FOr Miyya4e when modeling the deceleration process as a collision
croscopic ;lmullatlons cellular automata are widely used, buhegral. For example, the vehicles are assumed to be point-
already Prigogine and Herman and othgt$—14,1Q have  |ike particles and the slowing-down process is instantaneous.
introduced an approach using Boltzmann-like equations tene former assumption has already been generalizéd]in
describe traffic flow. On the macroscopic side several modelgy taking into account the finite car length and a velocity-
have been propos€d5,9,3, mainly based on analogies to gependent safety distance analogous to the classical ap-
hydrodynamic equations. In a series of papers HellhRig proach for dense gases due to Ensktg§—18. Now we
investigated the theoretical foundations of macroscopic trafant to relax the assumption of an instantaneous slowing-
fic equations and derived Euler-like and Navier-Stokes-likegown process towards a successive deceleration. For this, let
models from a reduced version of Paveri-Fontana’s equatiolls priefly recapitulate Paveri-Fontana’s Boltzmann-like
[12]. In a recent papdl], we derived Euler-like traffic equa- equation(for a detailed discussion sg2, 1)) and then intro-
tions from the full version of Paveri-Fontana’s equation, thusyyce the modified interaction term.

showing that a spatial variation in the variance of the desired | ot g(x,u,w,t) denote the one-vehicle distribution func-

speed can cause the onset of a traffic jam. Furthermore, Wg)n for vehicles with desired speed in the phase space
have extended Paveri-Fontana’s equation to high densities @banned byx,0,w,t, where g(x,v,w,t)dx dv dw denotes

taking the finite car length into account similarly to Enskog’she number of vehicles at timig in positiondx aroundx
theory[16-1§ for dense gases, eventually leading to differ- 54 actual speedv aroundv with desired speedw around

entVig/]radlent terms n;i'the mscro;coplc eiquatlonsii w. The road is assumed to be a one-dimensional, unidirec-
e now resume this work and generalize another assuMpy, | jane, but passing is allowed. This can be conceived as

tion made when writing down Paveri-Fontana’s equation, the, ¢qarse-grained multilane road where an average over the
assumption of an instantaneous slowing-down process. Wgitferent lanes has been taken.

relax this assumption towards a successive deceleration by tha gne-vehicle speed distribution functiofixfv,t) and
introducing a modified version of the interaction term. Ny gne-vehicle desired speed distribution’ function
Sec. Il we briefly summarize Paveri-Fontana’s traffic equay (x,w,t) are given by

tion and then introduce our modified interaction term for °*

extended vehicles with successive deceleration. The macro- +o0

scopic equations are derived in Sec. Ill and are related to our f(X,UJ):f dw g(X,v,w,t), 23
former model. We find that, besides some marginal changes, 0

the most important different feature is the appearance of a e

highly nonlinear term in the variance equation of the actual fo(X,W,t)=J dv g(x,0,w,t). (2.2
velocity that has an impeding effect. Indeed, the numerical 0

simulations discussed in Sec. IV show that this term yields a . ) )
qualitatively different behavior of the variance of the actualThe Vehicular concentration(x,t), the average velocity
velocity when compared to former models. In the congested (X.t), the average desired velocity(x,t), and the flow
region the variance now decreases, whereas it increases @X.t) are then defined as

the preceding “free driving region.” This dynamical behav- i e

ior is a direct consequence of the different interaction term c(x,t)zf dwf dv g(x,0,W,t), 2.3
and is supported by empirical data. 0 0
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o s dwf g “dv vg(X,v,w,t) pendences have been proppseﬂli:is’ﬂ. The assumption of an
v(x,t)= , (2.4 instantaneous interaction is approximately valid for pro-

c(x.t) cesses where the slowing-down timder and the length
vA T are short compared to the characteristic time and length

o “dwf g “dv wg(x,v,w,t)

w(x,t)= , (2.5  scales involved. Having made the assumption of vehicular
c(x,t) chaos, the microscopic equation is valid only for dilute traf-
_ fic.
q(x,t)=c(x, v (x,1). (2.6 In [1] we have already extended assumptidn to ve-

hicles with finite length including a velocity-dependent
safety distance. Hence we have introduced the required car
9 [wW—uv lengthd(v)=1+ v, wherel is the average car length, is
+— ( g) the velocity of the car, andis a reaction time. Now we want
v T S : .
to relax assumption(iv), i.e., the assumption that the
oo slowing-down process is instantaneous. For this, we describe
:f(x,U,t)J' dv’(1—-P)(v'—v)g(x,v’,W,t) the interaction process as followWsote that we take into
0 account the required car lengti{v) from the very begin-
v ning]. Letv . andv~ denote the actual speed of the slow car
—g(x,u,w,t)f dv'(1-P)(v—v")f(x,v'1), and the fast car, respectively. When the fast car reaches the
0 slow car from behind the slow car is a distami{e -.) ahead.
(2.7) The two vehicles interact with a probability-1P [assump-
tion (i)]. When an interaction takes place the slow car re-
where the following assumptions have been made. mains unaffected, i.e., it retains its velocity [assumption
(i) The slowing-down process has a probability«(®), (ii)], whereas the fast car changes its velocity to
whereP denotes the probability of passings=®P=<1. If the ®(v.,v.), with 0s®<wv- . In the original version of the
fast car passes the slow one, its velocity is not affected. collision term the fast vehicle adopts the velocity of the pre-
(i) The velocity of the slow car is unaffected by the in- ceeding slow vehicle, i.e®(v_.,v=)=v.. In order to in-

Paveri-Fontana’s Boltzmann-like traffic equation reads

g

0
at ¥ ax

teraction or by the fact of being passed. vestigate the effect of a more moderate deceleration we will
(iii) Cars are regarded as pointlike objects, so the vehiclehoose below® (v ,v-)=3(v-+v-). For other possible
length can be neglected. functions ® the calculations can be done analogously. For
(iv) The slowing-down process is instantaneous, i.e.example, a functiond’ with ®'(v_,v~)<v. would de-
there is no braking time. scribe an “overbraking” of the fast vehicle. The remaining
(v) Only two-vehicle interactions are considered; multi- assumptiongv) and (vi) are still assumed to be valid.
vehicle interactions are excluded. The modified collision integral on the right-hand side

(vi) One assumes *“vehicular chaos”, i.e., vehicles are(RHS) of Eq. (2.7) is then given by
not correlated,

(X, v,w, X", v’ W' t)=g(x,v,w,t)g(x",v",w',1), g
(2.8 (E) :f fo< dv,dvzo(X+d(v3))(vs—vq)
coll Svisvg

whereg, denotes the two-vehicle distribution function.

The first part of the collision integral of E¢2.7) de- X f(x+d(vs),01,09(X,03,W,1) (v = P(v1,03))
scribes the gain of the phase-space element, i.e., vehicles
with velocity v’=v collide with vehicles with velocity, —g(x,v,w,t)j J dv,dv,o(x+d(v))
while the second term describes the loss of the phase space svisv
element, i.e., vehicles with velocity collide with vehicles X (v—0)f(x+d(v),01,1)8Wa—D(vq,0)).
with even slower velocity '. Furthermore, it is assumed that
no driver changes his desired speed, i.e., (2.11
dw
T (2.9 The first part describes the gain of the phase-space element
aroundv,w, i.e., vehicles with velocity ; collide with ve-
and that the acceleration of each car is modeled by hicles with velocityv;<vs such that the velocity of the
faster vehicle after the collision is=®(v,v3). The second
dv w-v term describes the loss of the phase-space element around
oo T (210, w, i.e., vehicles with velocity collide with vehicles with

slower velocityv,;<v and are scattered to velocities,
i.e., the drivers approach their desired speed exponentially ir ®(v,v).
time, with time constanT. (T might be a function ot,v, When taking into account the finite car length, the effec-
see, for exampld,13].) tive volume is reduced and thus the collision frequency is
The probability of passing is usually chosen to be densityincreased. As if1l], we incorporate this by changing the
dependent, for exampl®(c)=1-c/c (C denotes the maxi- cross section in Eq2.7) from 1—P to the modified cross
mal density[11]), but additional velocity and variance de- sectiono= y(c,v)[1—P(c)] in Eg. (2.11), with
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_ 1 1 careful when considering the moments of the collision inte-

X(Cv)= === — —. (212 gral. In order to evaluate the integrals we again neglect third-
l-cd(v) 1-c(l+7) . : . .

and higher-order terms in the cumulant expansion of the dis-

Since the hindrance is now a distart@) ahead of the fast tribution function. This amounts to an approximation of the
car the cross section depends on the macroscopic quantiti€¥al equilibrium function by a normal distribution, i.e., we
at this point. This is implied by the notatiom(x+d(v)). ~ assume that the vehicles with desired veloaityare nor-

Later on we will Taylor expand around the positiox and ~ Mally distributed and that the local equilibrium distribution

use in the actual velocity is given by a Gaussiéthe latter is
L o supported by experimental dafa3,19-23). One first de-
dyo=(1—P)x*[d(v)dC+crdv |— xP’' dsC fines
=mndxCt Z&Xv_, (2.13 _ _
ovi=v—v, OW =W—W (3.1

with »=[od(v)—P']x, {=oxc7, andP’ denotes the de-
rivative of P with respect to its argunent. Note tha=0.

Notice also that the interaction is still instantaneous, but”lnd
the slowing-down process is now stepwise. When a fast car
interacts with a slow car its speed is reduced uo 0,,:=(60)%,  Ouu:=(W)2, ©O,,:=3dvdw,
=®(v.,v-). After the interaction the fast car is still behind (3.2
the slow car, but has now the required lengdv)

<d(v-). The fast car moves on before another collision can . .
take place. where the overbar denotes the normalized average with re-

spect to the distribution functiog(v,w).

IIl. MACROSCOPIC EQUATIONS

As in [1], we find a hierachy of moment equations by A. The continuity equation

taking the moments of E¢2.7), but we now have to be more Integration of the collision integrdR.11) overduv gives

f‘”dvf f dv,dvso(vs—vq) f(X+d(vs),v1,0)9(X,v3,W,1) @0 —P(vq1,v3))
0 0=<v;<vjy
_fwdvf f dvydv,o (v —vy) f(x+d(v),v1,0)g(X,0,W,1) 8@~ P(vy,v))
0 0=<v;=<v
=fwdv2f f dvidvzo(vs—vq) f(X+d(vs),v1,1)9(X,03,W,t) @W—P(v1,v3))
0 O0<vi<uvj
—fwdmf f dv,dv,o(vg—v) f(X+d(v),v1,0)9(X,0,W,t) 8@W,— P(v1,v3))
0 O<vq<uvj
:f f fo< dv,dv,dvgo(vz—vq)f(X+d(vs3),vq,t)g(X,v3,W,t) S@W—P(v4,03))
\vlévzév3

—f f f dv,dv,dvso(vy—vq)f(X+d(vs),vq,1)9(X,v3,W,t) S@W,—P(v4,v3))=0. (3.3
Osvisvysug

The contribution of the relaxation term in E(R.7) disap- Equation(2.11) is a continuity equation for each desired
pears due to vanishing surface terms. Thus we find speedw separately and has certainly also been found for the
original equation2.7); see[12,1]. A further integration over
9 J dw leads again to the continuity equation
E fo(X,w,t)+ X [v(x,w,t)fo(x,w,t)]=0, (3.9

i +O7 v)=0 3.6
EC a—X(CU)—. ()

wherev (x,w,t) is defined as
B. The mean desired velocity equation

o dv vg(x,v,W,t) (3.5 As in[12,1], integrating[LHS of Eq.(2.7)]=[Eg. (2.11)]
fo(X,w,t) ' overdv dw w leads to

v(x,w,t)=
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J _  J —
E(CW)‘FO?—X(CUW):O (3.7
and finally to

VW

c

FWF v W= — AC— 5O - (3.9
C. The mean actual velocity

We now take®(v. ,v-)=3(v-+v-). For the LHS of
Eq. (2.7), we again find after an integration ovév dw v,

J __ 0 T 3.9

E(Cv)ﬂL&(Cv )+f(v w), (3.9

whereas for the interaction term E@.11) one gets
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_ 2
a4=—COUU(I+Tv)—7'\/——Cevvxlew. (3.15
T

Comparing these equations with the respective mean velocity

equation previously derivedl], we immediately notice that
the coefficientsy; are identical, the only difference being the
factor 3 in front of the a;’s and in front of the interaction
term on the far-right-hand side of E(B.11).

D. The variance of the actual velocity

Integration of the LHS of Eq2.7) overdv dw v? yields,
after using Eqs(3.8) and (3.1,

3(cO,,) +vd,(cO,,)+3cO,,dw+ d,  c(v)?]

2c _
+ T (OUU—GUW)—UCZU—GUU-i—Cv[(al-i- ny)0yC

jdvjf dvdvso(x+d(vs))v(vs—vq) +(ax+{ag)dw+azd®,,], (3.16
0 svisvg

v1tuvs
2

—j dvjf dv,dvyo(x+d(v))v(v—vq)
0 <vsv

vitvu
2

~ = %O’CZGUU"‘ %C(alaXC‘f' azﬁxﬂ a3c7xevv)

whereas for the interaction ter(@.11) one gets

Xf(X+d(U3)=Ulat)f(X!U3at)6(U_ 0

f dvf f dv,dvgo(x+d(v3))vi(vz—vq)
0 OSU1SU3

Ul+U3
2

- jowdv j fosU1<vdvldvza(X+ d(v))v*(v—vy)

X f(x+ d(Ug),Ul,t)f(X,Ug,t)5<U_

X f(x+ d(v),vl,t)f(x,v,t)ﬁ(vz—

(3.10

In Appendix A we show the main steps of the calculation.
We just remark that we have Taylor expanded the distribu-
tion function aroundx, keeping only the linear terms, and
that we have approximated the local equilibrium solution by
a normal distribution. The coefficienta,,a,,a3,a, are
given below.

Equation(3.10, together with Eqs(2.13 and(3.9), leads
eventually to

+ %a4z9x(r.

v,tv
><f(x+d(v),v1,t)f(x,v,t)5(vz— > )

1
~— 0'( cwO,,+— c26w\/ew>
J

+ £10,C+ €20,0 + E3040 ,, + E4040, (3.17
where £,,&5,£3€, have a similar structure to the,’s. The
main steps of the calculation are given in Appendix B. To
find the coefficientst; we have again used a cumulant ex-

(1 1 O,, 1 __ pansion and have discarded third- and higher-order terms.
dtvd=|5 art 5 nagT — et 5 (ax+{ag)dyv Together with Eq.(3.16 (discarding the third-order cumu-
o lant) we get
L2 1)(9 0,+2" 1,0
5 az— xIov T T T 5 09y o 2 1
2 T 2 (gtevv_‘_vﬁxevuz?(evw_evv)__Gcevv Vevv
(3.19) Jm
with + (Bt nBa) e+ (Bt {Ba—20,,) 050
) + B350,y | (3.189
=—ol|l+7 —= + : : .
ay all ’T(\/; O,, ﬁ O,, (3.12 with
2 _ ~ 1 5
(12:(7(\/_—\/6””(|+TU)+TGUU C, (313) ﬁlz_a- \/_;euv Veuv(|+Tv)+ZeUUT ’ (319
o
S [T N 3.1 Fomo| 2 0,,(+ )+ —— 0,0 3.2
az=— E T \/_; wTU|]C, ( . 4) :82_0- 4 uv( Tl)) 2\/; Vv v T | Cs ( . @
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5 ( 1 e 1 o 321 3(CO ) F 0 (CO ) +2CO W+ CO s
=0 —F—= ) T0 ) — = va C, .
T ayw 8

+d [c(éW) ov]=0 3.23
and after discarding third-order cumulant to

~ 1 5 — —
Ba= —Cevv( \/—_ VO, (I+7v)+ 1 eUUT) . (3.22 O wwt v Oyt 20 ,,dxW=0. (3.29
T

F. The covariance equation

For the LHS of Eq.2.7), we again find after an integra-

Now the coefficient%i have slightly changed in comparison .
tion overdv dw vw and using Egs(3.8) and(3.11)

to the coefficientss; derived in[1]. More important is the
appearance of the second highly nonlinear term on the RHS 3(CO ) F VI (CO ) +2CO 50 +CO W
of Eq. (3.18. The negative sign of this term yields an im-

peding effect on the dynamical behavior of the variance,

— 1 _ c
250W) — = oc2 e _
similar to the last term of the covariance equati8r2?) (see +ax(c(dv) ) 2 oCWO,, + T (Ouw=Oww)

below).
+ % W [(a1+ pag)dyC+ (ay+ Lay)dw + 3040 ,,].
E. The variance of the desired velocity (3.29
As in [12,1], an integration of LHS of Eq. (2.7)]=[Eq.
(2.11)] overdv dw w? leads to For the interaction terni2.11) one gets

U1+U3

fdu Wf dvff dvldvgo(x+d(v3))v(v3—v1)f(x+d(v3),vl,t)g(x,v3,w,t)5(v— >
0 0 Osv;svj3

_fwdw wadvf J dvldvza(x+d(v))v(v—vl)f(x+d(v),vl,t)g(x,v,w,t)5<vz— vl;v
0 0 <vqsv

1 o o v
~3 f dw Wf dv3f del(o-i-d(vg)&xa)(vl—vg)(v3—v1)[f(X,v1,t)+d(v3)o7xf(x,v1,t)]g(x,vs,w,t)
0 0 0

1
NE ol C Wevv-i-

26UW v vv

(ﬂlaxc+ V2050 + V3050, + F4940), (3.26

\/—

where 9,,9,,93,9,, have a similar structure to the's. 2 o
Together with Eq.(3.25 (discarding the third-order cumu- v1=—0| —=0,,VO,,(I+70)+70,,0,, ],
lant) we get Vm
(3.28
_ 1 — 3 =
(?teuw+vf7xeuw:§(71+ 774)9xC V2= 0 (H_Tv)evw_l_T\/_;evW O,,]c, (329
o2+ 1g Oy | Ix0 — Oy W 1 0 1
5 V2T 5 6Y4T Yyw | OXVU T xW — w -
2 2 v ve =—0| ——= I+7v)+ 5 O,u]C,
ol i 1
1 1 (3.30
+ 2 ¥39xO 4, + T (Oww=Ouw) 2 o
v4=— —=1CO0,,VO,,(I+71)—270O,,0,,.
12 v
cO, - (3.27
\/; v Comparing Eq(3.27 with the former version ifl], we find

that again the coefficientsy; are identical and that just the
factor 3 has emerged in front of the’s and the far-right-
with hand term of Eq(3.27).
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FIG. 1. Time evolution of the traffic flow starting from a homogeneous state with a small perturbation of the desired velocity variance
using Eqs(3.6), (3.9), (3.11), (3.18), (3.24, and(3.27): (a) densityp, (b) mean velocityv, and(c) mean desired velocitw.

G. The homogeneous solution B; have changed, but the more important feature is the term

The homogeneous solution for the system of partial dif-—(1\7)acO,,\0,,, which has no corresponding part in

ferential equationg3.6), (3.8), (3.1, (3.18, (3.24), and
(3.27) is found to be

the original modelsee[1]). The homogeneous solution has
also changed. In E3.31) the factor; appears on the RHS
andO,, and©,, are no longer equdEgq. (3.32] as in the

— T original model. Finally, in the relation betweed,,,, and
w=uv= 2 7CO,, , (3.39 O, a factor 2 is missing in front of the scattering probabil-
ity o. The numerical simulations below show that these
T o changes and especially the different nonlinear term result in
O,w=6,,|1+ 5 =¢ G)UU) , (3.32  qualitatively different behavior of the variance of the actual
Vm velocity.
Ouwn=0,ul 1+ T Ji— c ew) _ (3.33 IV. NUMERICAL SIMULATIONS
a

Thus, given certain values far, v, and O,,, the mean

In Figs. 1 and 2 we present numerical simulations of Egs.
(3.9, (3.9, (3.11), (3.18, (3.29 and(3.27) obtained by step-

desired velocityw, the varianceO,,,, and the covariance Wwise integration. Periodic boundary conditions are assumed

O, are determined. andT=300, 7=0.5 s, and =5 m. As the homogeneous so-
Let us now summarize the comparison. The continuitylution we choose v=26 m/s, c=0.&(v), and ©,,

equation(3.6), the equation for the mean desired velocity =10.8 nf/s>.  Equations (3.3)—(3.33 then yield w

(3.8), and the equation for the variance of the desired veloc=34m/s, O,,=96.0 nf/s?, andO,,,= 25.6 nf/s>. At time

ity (3.24 remain unchanged. In the mean velocity equatiort=0 and positiork=5 km we have added a small Gaussian-

(3.11) and the covariance equatidB.27 we find a factor shaped perturbation to the otherwise constant desired veloc-

1 for the term originating from the collision integral. In Eq. ity variance©,,,.

(3.18 for the variance of the actual velocity the coefficients  First, we observe that similar to our former modg], a
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FIG. 2. Time evolution of the varianced O, and of the covarianc®,,,: (a) variance(sv)?, (b) variance(dw)?, and (c)

covariancesv éw.

vv !

traffic cluster is built, i.e., we find a region of lower density desired velocity. In order to interpret the dynamical behavior
followed by a region of higher density. But now the increaseof the mean desired velocity and the desired velocity vari-
of the density[Fig. 1(a)] and the decrease of the mean ve-ance we show these rescaled quantities together with the res-
locity [Fig. 1(b)] are much more moderate, as we expectcaled density at timé= 200 in Fig. 4. A high desired veloc-
from the modified collision integral. The other dynamical ity variance represents a mixing of desired velocity
quantitieg Figs. 1c), and Za)—2c| behave in a similar mod- *“classes,” while a low desired velocity variance means that
erate way. The striking different feature is now the decreasenly drivers with similar desired velocities are present. At
of the velocity variance in the jam regi¢Rig. 2(@)], in con-  the rear end of the density cluster we find a higher mean
trast to the increasing behavior of the velocity variance in thedesired velocity and a lower desired velocity variance, i.e.,
former model. This is in agreement with empirical data in-more drivers with a high desired velocity reach the rear end
vestigated by Helbin2]. He finds that, although there is a per time unit than drivers with a low desired velocity. At the
small peak in the velocity variance at the onset of a trafficfront end of the jam we observe a low mean desired velocity
jam due to larger fluctuations, the velocity variance de-and a high variance. At this point the cars reach the free
creases in the high-density jam region. In the former modetlriving region, i.e., we find all kinds of driver characters, but
we assumed a sharp change in the velocity when a fast céine more timid drivers stay behind. The more aggressive
reaches a slow car. Now vehicles reaching the rear end of thdrivers accumulate again at the front end of the low-density
high-density region adapt their velocity successively to theegion. To summarize the simulation results, we observe that
lower mean velocity, thus the velocity variance is lowered.the overall behavior of the dynamical quantities is similar to
In Fig. 3 we have plotted the rescaled densitithe rescaled the former model, except that the velocity variance shows
mean velocityv, and the rescaled velocity varian€g,, at  now a more realistic behavior.

time t=200 s(periodic boundary conditionsIn Fig. 2c) we

observe_that thg covariance is lower i_n the jam r_egion,_ ie., V. CONCLUSION

more drivers drive with a lower velocity than their desired

velocity, while the covariance is higher in the preceding low- In order to model a more realistic slowing-down process
density region, meaning that it is now easier to reach one’sve have presented a modified Boltzmann-like traffic equa-
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FIG. 3. Rescaled dynamical quatitiestat200 s(note the peri- FIG. 4. Rescaled dynamical quatitiestat200 s(note the peri-
odic boundary conditions densityc (solid line), mean velocityv odic boundary conditionsdensityc (solid line) mean desired ve-
(dashed ling and velocity varianc®,, (dash-dotted ling locity w (dashed ling and desired velocity variand®,,,, (dash-

dotted lineg.

tion. In contrast to PaVeri-FontanaESZ] Ol’iginal VeI’Sion, ahead, the s|owing_down time can exceed the averaging
the deceleration is now a successive process. We have th@te, i.e., the deceleration can no longer be regarded as being
derived a macroscopic traffic model and have found that th¢ystantaneous. The two models represent two extreme ways
most important different feature is a nonlinear term in tneof mode”ng the S|Owing_down processes: One is rather sud-
VelOCity variance equation. Numerical simulations show tnaHen, whereas the other is h|gh|y ordered and moderate. Up to
again a traffic cluster is bUllt, albeit the dynamical evolution now, we have not taken into account the case of panic brak-
is now more moderate. More striking is the dynamical be-ng, j.e., a fast vehicle finds a slower leading vehicle within
havior of the velocity variance, which is now complementaryits safety distance, or the case of imperfect braking, i.e., ve-
to our former model. Whereas in the former model the ve+jcles slow down to velocities slower than the velocity of
locity variance possesses a sharp peak in the high-densitieir leading vehicle. The former has been worked out by
region, we now find a smaller velocity variance in the clus-Nelson[10] by generalizing the vehicular chaos assumption,
ter. This behavior is qualitatively supported by empirical\whereas the latter has been treated by Hellizly Both
traffic data[2] and can be explained by the interaction pro-cases result in sudden velocity changes yielding a higher
cess since vehicles now adjust their velocity stepwise to th@ariance and might therefore cancel to some extent the ef-
velocity of the leading vehicles. In order to obtain macro-fects of the successive slowing-down process discussed here,

scopic quantities from measurements one has to average ovgiit the overall macroscopic behavior is apparently governed
a certain time inteval. Instantaneous SlOWIng down meangy a more moderate Ve|0city adjustment_

that the time of deceleration is small compared to the aver-

aging time. When fast vehicles reach slower vehicles they ACKNOWLEDGMENTS

have higher velocities before the slowing-down process and

lower velocities after, i.e., the macroscopic velocity variance The author is grateful to H. Lenz, J. Wagenhuber, R.
is higher. But since drivers also react on traffic conditions farSollacher, and B. Sclmann for valuable discussions.

APPENDIX A: THE MEAN ACTUAL VELOCITY

Here we just sketch some of the steps to get from the first line of E40 to the second line:

© Ul+03
f dvf f dvldv30(x+d(vg))v(vg—vl)f(x+d(v3),v1,t)f(x,v3,t)5<v— 2 )
0 O$U1§U3

% vitv
—f dvf f dvldvza(x-i—d(v))v(v—vl)f(x-l—d(v),vl,t)f(x,v,t)é(vz— )
0 <v v 2

oo +
=f dvsz dvldvgo'(x—i—d(vg))vz(vg—vl)f(x+d(vg),vl,t)f(x,vg,t)6<vz—vlzvs)
0 O€v1€U2€v3

© v,itv
_f dvsz dvldv3cr(x+d(vg))vg(vg—vl)f(x—i—d(vg),vl,t)f(x,vg,t)5<vz— 12 3)
0 <SvSUoSUg
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1 * U3
~z] dvg . dvio(x+d(vg))(vi—v3)(vg—v)[f(X,v1,t) +d(v3) dxf(X,v1,0)]F(X,03,1)
’NV%UJ dUsJ dvl(vlvs_Ui)f(X,vl,t)f(XW&t)—%1“7XUJ dU3J deld(va)(vs—01)2f(X,01,t)f(X,va,t)
0 0 0 0

"‘%GJ dUsJ 3d01(20103_Ui_Ua)d(Us)f(vasyt)ﬁxf(X,vl,t)
0 0

~—20C%0,,+ 3C(a10,C+ apdyv + a39,0,,) + 3 asdXo. (A2)

In going from the second to the third line we have Taylor expanded the distribution function at@madonly kept the linear
terms. Between line 3 and line 4 we have Taylor expanded the cross seckaon the detailed calculations of the integrals in
line 4 (and similar integrals beloywe refer to[1], where similar expressions have been evaluated for the original collision
integral. In order to derive these corrections we have approximated the local equilibrium solution by a normal distribution.

APPENDIX B: THE VARIANCE OF THE ACTUAL VELOCITY

To get to the last line of Eq3.17) we make the following steps:

* 2 Ul+03
dv dv,dvzo(X+d(vg))vi(vs—v) f(X+d(vs),v1,t)f(X,v3,1) 8 v— 5
0 <viSvg

% U1+U
—f dvf f dvldvza(x+d(v))vz(v—vl)f(x—i-d(v),vl,t)f(x,v,t)5(v2— )
0 O=<v=<v 2

[’} 2 Ul+l13
=| dov, dv,dvgo(x+d(vs))vs(vz—v) f(X+d(vs),vg, 1) (X,03,1) 8| vo— 2
0 Osvlsvzévg

o0 2 U]_+U3
- dl)z dU]_dU3O'(X+d(U3))U3(U3_Ul)f(x+d(v3)yvl,t)f(X,U3,t)5 UVo— 2
0 OSU1SU2$U3

%%fo dv3fov3dvla'(x+ d(U3))U%(U3_Ul)[f(x,vl,t)+d(U3)(9xf(X,Ul,t)]f(X,U3,t)

_%fomdv3fovadvla(x+ d(v3))v§(v3—vl)[f(X,vl,t)+d(vg)¢9xf(x,v1,t)]f(x,v3,t)
o v3

+1 . dvs . dvio(x+d(vg)vva(vyg—v)[f(Xvq,t) +d(v3)d f(X,vq,0) [f(X,v3,1)

W%Jo d03JO dvl(a-l-d(vg)(?xcr)vi(vg—vl)f(x,vl,t)f(x,v3,t)
+3 J dus J *du (o4 d(03) dy0) (2020, —va02— D) F(X,0 1, D F(X,03,1)
0 0

+ | "o | “dus(o+d09)0)(~ Juswd+ fudua— 1d- 2oDdwa) (605 DT 00

+§1axc+§2‘9xﬂ £30,0,, 1 €404 (B1)

1
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